

Curso de Termodinâmica-GFI 00210 2° semestre de 2016

Prof. Jürgen Stilck 5/10/2016

1ª Prova

Aluno(a):

Questão 1 (3 pontos)

Num processo de compressão de N moles de um gás monoatômico ideal é verificado que a temperatura T varia com o volume V de acordo com a expressão:

$$T = T_0 \left(\frac{V}{V_0}\right)^{\eta},\,$$

onde η é uma constante e V_0 e T_0 são o volume e a temperatura iniciais. O gás é comprimido até o volume final $V_1 < V_0$. Para esse processo de compressão:

- a) Qual é o trabalho realizado pelo gás?
- b) Determine a variação da energia interna do gás.
- c) Calcule o calor recebido pelo gás.
- d) Qual é o valor da constante η se o processo for isobárico? E se for adiabático?

Questão 2 (4 pontos) Um gás monoatômico ideal realiza um processo cíclico formado por uma isobárica (AB), uma isocórica (BC) e uma isotérmica (CA). A temperatura do estado B é o dobro da do estado A $(T_B = 2T_A)$.

- a) Esboce a representação do ciclo num diagrama (V, p) e num diagrama (S, T).
 - b) Mostre que $V_B/V_A=2$ e $p_A/p_C=2$.
- c) Determine o calor recebido e o trabalho realizado pelo gás em cada um dos três trechos do ciclo. Exprima os seus resultados em termos de p_A e V_A .
- d) Calcule o rendimento do ciclo e o compare com o rendimento de um ciclo de Carnot que opera entre as mesmas temperaturas extremas.

Questão 3 (3 pontos)

Um gás com a capacidade térmica isocórica constante C_V , inicialmente à temperatura T_1 , é colocado em contato térmico com um reservatório de calor à temperatura (constante) T_0 , num processo isocórico. O sistema composto pelo gás e pelo reservatório é isolado.

- a) Determine a variação da entropia do gás (ΔS) . Discuta o seu sinal nos casos $T_0 > T_1$ e $T_0 < T_1$.
- b) Determine a variação da entropia do reservatório (ΔS_R) , Discuta o seu sinal nos casos $T_0>T_1$ e $T_0< T_1$.
- c) Calcule a variação da entropia do sistema isolado composto. Discuta o seu sinal nos dois casos e comente o seu resultado.